

Tetrahedron: Asymmetry 12 (2001) 337-340

TETRAHEDRON: ASYMMETRY

A new and rapid access to homochiral 2,3-dihydro-oxazolo[2,3-*b*]quinazolin-5-ones

David Gueyrard,^a Onofrio Leoni,^b Sandro Palmieri^b and Patrick Rollin^{a,*}

^aInstitut de Chimie Organique et Analytique, Université d'Orléans, B.P. 6759, F-45067 Orléans, France ^bIstituto Sperimentale per le Colture Industriali, MiPA, via di Corticella 133, I-40129 Bologna, Italy

Received 5 January 2001; accepted 16 January 2001

Abstract—Starting from homochiral 1,3-oxazolidine-2-thiones 1, a two-step sequence led to homotopic 2,3-dihydro-oxazolo[2,3-b]quinazolin-5-one derivatives 3. The sequence was developed and studied regarding its scope and limitations. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Within the frame of our recent studies on biotechnological synthesis using vegetable sources¹ and the reactivity of homochiral 1,3-oxazolidine-2-thiones 1,² we envisaged a short sequence for the efficient synthesis of the corresponding 2,3-dihydro-oxazolo[2,3-*b*]quinazolin-5one derivatives **3a–f** (Table 1). Many papers report on cyclo-condensation reactions involving anthranilic acid

Table 1	l. 1	Homochiral	derivatives	5 3a-f	produced	(Fig.	2))
---------	------	------------	-------------	--------	----------	-------	----	---

Entry	1a—f	R1; R2; R3; R4	2a-f (%)	3a-f (%)
1	OZT	H; H; H; H	55	64
2	(+)-(5R)-5-Vinyl-	H; H; CH=CH ₂ ; H	93	68
3	(-)-(5S)-5-Vinyl-	H; H; H; CH=CH ₂	85	63
4	(-)- $(5R)$ -5-Phenyl-	H; H; Ph; H	73	62
5	(+)- $(4R)$ -4-Methyl-	Me; H; H; H	78	82
6	(-)-(5 <i>S</i>)-5-Methyl-5- ethyl-	H; H; Me; Et	94	80

derivatives together with a wide range of substrates including imidates and iminohalides³ (Fig. 1).

We have tried to extend this type of reaction to homochiral 1,3-oxazolidine-2-thiones with a view to providing a new access to homotopic 2,3-dihydro-oxazolo[2,3-*b*]quinazolin-5-one derivatives of the type **3**. For example, such compounds have been previously synthesized as intermediates in the synthesis of analogues of ketanserin, a prototypic 5-HT_{2a} and 5-HT_{1c} serotonin antagonist.⁴ In addition, it has been shown recently that chiral analogues of ketanserin enhanced the receptor affinity in the picomolar range by the introduction of an α -methyl group.⁵

In order to build up this tricyclic skeleton, compounds **1a–f** were first reacted with benzyl bromide leading to the formation of 2-benzylthio-1,3-oxazolines **2a–f**.⁶ With regard to stability, the selected S-benzyl derivatives were shown to be the best in the preparation of intermediate oxazolines.⁷ Subsequently, the cyclization

Figure 1.

0957-4166/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(01)00032-5

^{*} Corresponding author. E-mail: patrick.rollin@univ-orleans.fr

Figure 2.

reaction in the presence of anthranilic acid was performed in good yields.

The results obtained with the parent 1,3-oxazolidine-2thione **1a** and homochiral derivatives **1b**–**f** are summarized in Table 1.

To extend the scope of the method and explore its limitations, we completed some additional trials with diverse 1,2-aromatic amino acids and oxazoline **2b** (Table 2). The results showed that the presence of an electron withdrawing aromatic system in the reagent was deleterious to the reaction. In addition, the replacement of the phenyl substituent with a pyridine ring did not allow formation of the desired compound.

In summary, a concise and practical synthesis of homochiral 2,3-dihydro-oxazolo[2,3-*b*]quinazolin-5-one derivatives has been developed starting from the corresponding 1,3-oxazolidine-2-thiones. This procedure constitutes an original extension of cyclo-condensations involving anthranilic acid.

2. Experimental

Melting points were determined with a Köfler hot-stage apparatus and are uncorrected. Specific rotations were measured at 20°C using a Perkin–Elmer polarimeter 141. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution on a Bruker Avance DPX250 instrument operating at 250 and 62.9 MHz, respectively. The coupling constants (*J*) are reported in Hz and the chemical shifts (δ) in ppm downfield from tetramethylsilane as the internal standard. IR spectra were measured using a Perkin–Elmer FT Paragon 1000 PC spectrometer. Mass spectra (MS) were obtained on a Perkin–Elmer SCIEX API 300 spectrometer (Ionspray[®] mode).

2.1. Typical procedure for S-alkylation

Compounds 2 were obtained according to the procedure described by Nagao et al.⁶ which was slightly modified.²

2.1.1. 2-Benzylthio- Δ^2 -1,3-oxazoline 2a. See Ref. 6.

21.2. (5*R*)-2-Benzylthio-5-vinyl- Δ^2 -1,3-oxazoline 2b. [α]_D = +9 (*c* 1, CHCl₃); IR (NaCl): 1605 (C=N); ¹H NMR: 3.63 (dd, J_{4b-5} = 7.7, J_{gem} = 13.4, 1H, H-4b), 4.05 (t, J_{4a-5} = 9.4, 1H, H-4a), 4.27 (s, 2H, SCH₂), 5.04 (m, 1H, H-5), 5.24 (d, J_{vic} = 11.5, 1H, H-7_{*z*}), 5.56 (d, J_{vic} = 17.1, 1H, H-7_{*E*}), 5.89 (m, J_{6-5} = 7.0, 1H, H-6), 7.26–7.49 (m, 5H, Har); ¹³C NMR: 36.6 (SCH₂), 60.7 (C-4), 82.8 (C-5), 118.4 (=CH₂), 128.0, 129.0, 129.4, 137.0 (Car), 136.0 (=CH), 165.5 (C-2); MS: MH⁺ = 220; HRMS calcd for C₁₂H₁₃NOS: 219.0718; found 219.0723.

2.1.3. (5*S*)-2-Benzylthio-5-vinyl- Δ^2 -1,3-oxazoline 2c. $[\alpha]_D = -13$ (*c* 1, CHCl₃); HRMS calcd for C₁₂H₁₃NOS: 219.0718; found 219.0727.

2.1.4. (*5R*)-2-Benzylthio-5-phenyl- Δ^2 -1,3-oxazoline 2d. [α]_D = +180 (*c* 1, CHCl₃); mp = 120–122°C; IR (KBr): 1651 (C=N); ¹H NMR: 3.82 (dd, J_{4b-5} = 7.9, J_{gem} = 13.5, 1H, H-4b), 4.28 (t, J_{4a-5} = 9.7, 1H, H-4a), 4.30 (s, 2H, SCH₂), 5.55 (m, 1H, H-5), 7.24–7.42 (m, 10H, Har); ¹³C RMN: 36.7 (SCH₂), 63.3 (C-4), 83.3 (C-5), 126.2, 128.0, 128.9, 129.1, 129.2, 129.4, 137.0, 140.6 (Car), 165.5 (C-2); MS: MH⁺ = 270; HRMS calcd for C₁₆H₁₅NOS: 269.0874; found 269.0881.

2.1.5. (4*R*)-2-Benzylthio-4-methyl- Δ^2 -1,3-oxazoline 2e. [α]_D=+8 (*c* 0.4, CHCl₃); IR (NaCl): 1608 (C=N); ¹H NMR: 1.28 (d, J_{vic} =6.4, 3H, CH₃), 3.87 (dd, J_{4-5b} =7.7, J_{gem} =7.7, 1H, H-5b), 4.18–4.27 (m, 1H, H-4), 4.26 (s, 2H, SCH₂), 4.43 (dd, J_{4-5a} =8.9, 1H, H-5a), 7.25–7.40

(m, 5H, Har); ¹³C NMR: 21.8 (CH₃), 36.7 (SCH₂), 62.5 (C-4), 76.0 (C-5), 128.0, 129.0, 129.4, 137.0 (Car), 165.1 (C-2); MS: MH⁺=208; HRMS calcd for $C_{11}H_{13}NOS$: 207.0718; found 207.0716.

2.1.6. (5*S*)-2-Benzylthio-5-ethyl-5-methyl- Δ^2 -1,3-oxazoline 2f. [α]_D=-9 (*c* 2.9, CHCl₃); IR (NaCl): 1606 (C=N); ¹H NMR: 0.90 (t, J_{vic} =7.5, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.67 (q, 2H, CH₂), 3.53 and 3.67 (2d, J_{gem} = 13.4, 2H, H-4), 4.23 (s, 2H, SCH₂), 7.23–7.42 (m, 5H, Har); ¹³C NMR: 8.5 (CH₃), 25.4 (CH₃), 33.2 (CH₂), 36.4 (SCH₂), 65.0 (C-4), 89.7 (C-5), 127.9, 129.0, 129.3, 137.1 (Car), 164.5 (C-2); MS: MH⁺=236; HRMS calcd for C₁₃H₁₇NOS: 235.1031; found 235.1023.

2.2. Typical procedure for cyclization

Compound **2b** (0.305 g, 1.39 mmol) was dissolved in ethanol (10 mL) in the presence of molecular sieves (4 Å). Anthranilic acid (0.229 g, 1.2 equiv.) was then added. The reaction mixture was refluxed for 18 h, then made neutral with aqueous sodium hydrogencarbonate and extracted with dichloromethane ($3\times$). The combined organic phases were dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate 1:1) to furnish the desired compound **3b** as oil (0.202 g, 68%).

2.2.1. 2,3-Dihydro-5*H***-[1,3]oxazolo[2,3-***b***]quinazolin-5one 3a. See Ref. 4.**

2.2.2. (2*R*)-2-Vinyl-2,3-dihydro-5*H*-[1,3]oxazolo[2,3-*b*]quinazolin-5-one 3b. $[\alpha]_D = +55$ (*c* 1.0, CHCl₃); IR: 1694 (C=N), 1613 (C=O); ¹H NMR: 4.02 (dd, 1 H, $J_{gem} =$ 11.3, $J_{vic} = 7.3$, H-3b), 4.48 (dd, 1H, $J_{vic} = 8.8$, H-3a), 5.36 (m, 1H, H-2), 5.43 (d, 1H, J = 10.5, =CH_{2z}), 5.56 (d, 1H, J = 17.0, =CH_{2E}), 6.00 (m, 1H, J = 6.5, =CH), 7.28 (t, 1H, J = 7.6, H-7), 7.47 (d, 1H, H-9), 7.63 (t, 1H, H-8), 8.11 (d, 1H, H-6); ¹³C NMR: 47.6 (C-4), 78.8 (C-5), 118.8 (Car), 121.0 (C-7), 125.1, 126.5, 126.8 and 135.1 (CHar), 133.3 (C-6), 149.2, 155.4 and 161.1 (Car); MS: MH⁺=215; HRMS calcd for C₁₂H₁₀N₂O₂: 214.0742; found 214.0747.

2.2.3. (2*S*)-2-Vinyl-2,3-dihydro-5*H*-[1,3]oxazolo[2,3-*b*]quinazolin-5-one 3c. $[\alpha]_D = -60$ (*c* 1.0, CHCl₃); HRMS calcd for C₁₂H₁₀N₂O₂: 214.0742; found 214.0750.

2.2.4. (2*R*)-2-Phenyl-2,3-dihydro-5*H*-[1,3]oxazolo[2,3-*b*]quinazolin-5-one 3d. $[\alpha]_D = +79$ (*c* 1.0, CHCl₃); mp = 174–176°C; IR: 1683 (C=N), 1646 (C=O); ¹H NMR: 4.22 (dd, $J_{vic} = 7.8$, $J_{gem} = 11.5$, 1H, H-3b), 4.74 (dd, $J_{vic} = 8.8$, 1H, H-3a), 5.93 (m, 1H, H-2), 7.32 (td, J =1.1, J = 8.0, 1H, H-7), 7.42 (s, 5H, Har), 7.53 (dd, 1H, H-9), 7.67 (td, 1H, H-8), 8.16 (dd, 1H, H-6); ¹³C NMR: 49.8 (C-3), 79.5 (C-2), 119.1 (C-5a), 125.2 (C-7), 126.2 (Car), 126.7 (C-9), 127.1 (C-6), 129.6 (Car), 135.3 (C-8), 137.1 (Car), 149.4 (C-9a), 155.5 (C-10a), 161.1 (C-5); MS: MH⁺=265; HRMS calcd for C₁₆H₁₂N₂O₂: 264.0899; found 264.0908. **2.2.5.** (*3R*)-3-Methyl-2,3-dihydro-5*H*-[1,3]oxazolo[2,3-*b*]quinazolin-5-one 3e. $[\alpha]_D = -105$ (*c* 1.0, CHCl₃); mp = 90–92°C; IR: 1685 (C=N), 1643 (C=O); ¹H NMR: 1.62 (d, $J_{vic} = 6.3$, 3H, CH₃), 4.31 (dd, J = 8.8, J = 4.0, 1H, H-2b), 4.74 (dd, J = 8.8, 1H, H-2a), 4.90 (m, 1H, H-3), 7.31 (td, J = 1.3, J = 8.0, 1H, H-7), 7.50 (dd, 1H, H-9), 7.66 (td, 1H, H-8), 8.16 (dd, 1H, H-6); ¹³C NMR: 19.0 (CH₃), 51.8 (C-3), 72.9 (C-2), 119.3 (C-5a), 125.1 (C-7), 126.5 (C-9), 127.0 (C-6), 135.1 (C-8), 149.4 (C-9a), 155.6 (C-10a), 161.2 (C-5); MS: MH⁺=203.5; HRMS calcd for C₁₁H₁₀N₂O₂: 202.0742; found 202.0738.

2.2.6. (2*S*)-2-Ethyl-2-methyl-2,3-dihydro-5*H*-[1,3]oxazo-lo[2,3-*b*]quinazolin-5-one 3f. $[\alpha]_D = -15$ (*c* 1.0, CHCl₃); mp = 82–84°C; IR: 1678 (C=N), 1642 (C=O); ¹H NMR: 1.04 (t, $J_{vic} = 7.5$, 3H, CH₃), 1.60 (s, 3H, CH₃), 1.90 (q, 2H, CH₂), 3.99 and 4.10 (2d, J = 11.5, 2H, H-3), 7.30 (td, J = 1.1, J = 8.3, 1H, H-7), 7.47 (dd, 1H, H-9), 7.64 (td, 1H, H-8), 8.17 (dd, 1H, H-6); ¹³C NMR: 8.2 (CH₃CH₂), 25.4 (CH₃), 33.3 (CH₂CH₃), 52.3 (C-3), 86.7 (C-2), 118.9 (C-5a), 124.7 (C-7), 126.5 (C-9), 127.0 (C-6), 135.1 (C-8), 149.7 (C-9a), 155.4 (C-10a), 161.5 (C-5); MS: MH⁺ = 231.5; HRMS calcd for C₁₃H₁₄N₂O₂: 230.1055; found 230.1063.

2.2.7. (*2R*)-8-Chloro-2-vinyl-2,3-dihydro-5*H*-[1,3]oxazo-lo[2,3-*b*]quinazolin-5-one 4. $[\alpha]_D = +48$ (*c* 1.0, CHCl₃); mp=114–116°C; IR: 1687 (C=N), 1647 (C=O); ¹H NMR: 4.02 (dd, $J_{vic} = 7.3$, $J_{gem} = 11.5$, 1H, H-3b), 4.49 (dd, $J_{vic} = 8.7$, 1H, H-3a), 5.39 (m, 1H, H-2), 5.47 (d, J = 10.2, 1H, =CH_{2Z}), 5.58 (d, J = 17,1, 1H, =CH_{2E}), 6.01 (m, 1H, =CH), 7.25 (dd, J = 1.9, J = 8.5, 1H, H-7), 7.47 (d, 1H, H-9), 8.04 (d, 1H, H-6); ¹³C NMR: 47.6 (C-3), 79.1 (C-2), 117.4 (C-5a), 121.4 (=CH₂), 125.8 (C-7), 126.3 (C-9), 128.3 (C-6), 133.0 (=CH), 141.4 (C-8), 150.5 (C-9a), 156.2 (C-10a), 160.5 (C-5); MS: MH⁺=249 and 251; HRMS calcd for C₁₂H₉ClN₂O₂: 248.0353 and 250.0323; found 248.0351 and 250.0319.

2.2.8. (*2R*)-7-Methyl-2-vinyl-2,3-dihydro-5*H*-[1,3]oxazolo[2,3-*b*]quinazolin-5-one 5. $[\alpha]_{D} = +64$ (c = 1.0, CHCl₃); mp=110–112°C; IR: 1686 (C=N), 1643 (C=O); ¹H NMR: 2.40 (s, 3H, CH₃), 4.01 (dd, $J_{vic} = 7.2$, $J_{gem} =$ 11.3, 1H, H-3b), 4.48 (dd, $J_{vic} = 8.5$, 1H, H-3a), 5.35 (m, 1H, H-2), 5.43 (d, J = 10.5, 1H, =CH_{2Z}), 5.55 (d, J =17.3, 1H, =CH_{2E}), 6.00 (m, J = 6.6, 1H, CH), 7.37 (d, J = 8.3, 1H, H-9), 7.44 (dd, J = 1.9, 1H, H-8), 7.88 (sl, 1H, H-6); ¹³C NMR: 21.4 (CH₃), 47.7 (C-3), 78.7 (C-2), 118.6 (C-5a), 121.0 (=CH₂), 135.1 (C-7), 126.4 (C-9 and C-6), 133.4 (=CH), 136.6 (C-8), 147.2 (C-9a), 155.0 (C-10a), 161.2 (C-5); MS: MH⁺=229; HRMS calcd for C₁₃H₁₂N₂O₂: 228.0899; found 228.0892.

Acknowledgements

The authors thank the French M.E.N.R.T. for a grant (D.G.). We also thank the EU for financial support through the B.O.P. Project (FAIR CT 95-0260).

References

- Leoni, O.; Bernardi, R.; Gueyrard, D.; Rollin, P.; Palmieri, S. *Tetrahedron: Asymmetry* **1999**, *10*, 4775.
- Gueyrard, D.; Grumel, V.; Leoni, O.; Palmieri, S.; Rollin, P. *Heterocycles* 2000, 52, 827.
- (a) Deck, J. F.; Dains, F. B. J. Am. Chem. Soc. 1933, 55, 4986; (b) Sauter, F.; Fröhlich, J.; Blasl, K.; Gewald, K. Heterocycles 1995, 40, 851; (c) Prashad, M.; Chen, L.; Repic, O.; Blacklock, T. J. Synth. Commun. 1998, 28, 2125.
- 4. Herndon, J. L.; Ismaiel, A.; Ingher, S. P.; Teitler, M.;

Glennon, R. A. J. Med. Chem. 1992, 35, 4903.

- Klass, T.; Elz, S. XVIth International Symposium on Medicinal Chemistry; 18–22 September 2000, Bologna, Italy; p. 356.
- Nagao, Y.; Inoue, K.; Yamaki, M.; Shiro, M.; Takagi, S.; Fujita, E. Chem. Pharm. Bull. 1988, 36, 4293.
- During this first step unwanted ring opening can take place to produce a brominated linear thiocarbamate, the yield of which increases with prolonged reaction times. See: Nedolya, N. A.; Papsheva, N. P.; Afonin, A. V.; Trofimov, B. A.; Kukhareva, V. A.; Kashik, T. V. Sulfur Lett. 1992, 14, 103.